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1.- Introduction

* lonospheric scintillation is a challenging problem for GNSS users,
degrading the navigation of both, dual and single frequency solutions

* It happens when the GNSS signals pass through ionospheric
irregularities, producing rapid changes in the refraction index. When
such ionospheric irregularities are at scale lengths below 400m,
diffractive effects on the signal appear. All these effects can lead to
cycle-slips, loss of GNSS signals and increased noise.

« Scintillation is experienced at high latitudes mostly associated to
space weather or geomagnetic storms and at low latitudes after the
sunset. But both types of scintillation are quite different.

* |In this presentation we are going to characterize the scintillation
phenomena, from the navigation point of view and to assess the
feasibility of high accuracy positioning under scintillation conditions.
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@ 2.- High latitude scintillation

» It is produced by fast variations on the refractive index,
associated to 7ast moving (up to several km/s) /arge-scale
Irregqularities. As result, fast variations of STEC, with time scales
of few seconds are experienced.

* It causes fast fluctuations on o emmenmmmER e |
the carrier phase (large o), .| o et ©
while the amplitude of the Lo |
signal is not strongly affected
(low S4 values). .|

« Although phase shifts rapid

04 | o CQS;)
enough can challenge the 0z | S 7®
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frequent carrier cycle-slips. o,> 1.8 rad = Strong scintillation

S4 < 0.2 = Low
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e High latitude scintillation
Example with an ISMR Rx (KIR1)

KIR1 (20.4E, 67.7N)
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High latitude scintillation
Example with an ISMR Rx (KIR1)

Geodetic de

—trending of L,e: STEC (TECUS) ———
lonosphere-free combination of L, L:

KIR1 PRIMNOL: IF residuals [cm} "

8 [ carriers; -after removing, geometry; : i .
clocks, troposphere and wind-up. ]

Geometry-free combination

of carriers (L,=L;-L:).

¢ | = Scintillation effects are mostly ,- > Large oscillations due to the |
removed on Lg ' refractive scintillation.
fRLy - f2Ls | J
4 _LIF - "
ﬁ _fé !
(L, |in length units)
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High latitude scintillation
Example with an ISMR Rx (KIR1)
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High latitude scintillation
Navigation under strong scintillation
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High latitude scintillation
Navigation under strong scintillation
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Being mostly refractive scintillation and not producing large number of cycle-slips,
adual frequency users can navigate also during high ronospheric activity. But, due
to the large space-temporal gradients it is challenging for single frequency users.
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High latitude scintillation
Navigation under strong scintillation

Navigation performance with L.
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Being mostly refractive scintillation and not producing large number of cycle-slips,
adual frequency users can navigate also during high ronospheric activity. But, due
to the large space-temporal gradients it is challenging for single frequency users.
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3.- Low latitude scintillation

 Among the previous effects, in low latitude, ionospheric irregularities
at scale lengths of below 400 m are experienced (Fresnel length for
GNSS signals). Then, the signals are scattered (a/ffracted) reaching
the receiver through multiple paths.

» This diffractive effect can seriously challenge the GNSS receivers,
causing signal power fades, which results in large variations of signal
amplitude (and then high S4 values), and experiencing fast phase
fluctuations. They can cause signal loss and frequent cycle s/ips.

« It appears after sunset and last for several hours. It has a seasonal
component, being most intense at the equinoxes.

Large SNR *

fading due to
the diffractive
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scintillation on  * |
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e Low latitude scintillation
Effect on the Lz combination
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- The geodetic de-trending of L,- allows to depict the increased noise
-and the 1-cycle jump. 12
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They are small cycle-slips (involving just 1 cycle in L1 or L2), being difficult to detect!



@ Low latitude scintillation |

Navigation example
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@ Low latitude scintillation |~

Navigation example
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With a geodetic de-trending of L., it IS possible to distinguish between these
1-cycle jumps occurring in L1 (0.484 m) and L2 (0.377 m)
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@ Low latitude scintillation

Navigation example
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@ Low latitude scintillation

Navigation example
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The challenge is to detect 1-cycle jumps “in real-time”.
Although the equatorial scintillation increase the carrier noise, high accuracy
navigation with dual-frequency signals is possible, if the cycle-slips are detected



@ How these cycle-slips perform?
STEC from Geodetic
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With 50Hz measurements, the geodetic de-trending of L1 and L5 carriers allows to
depict the trend producing the 1-cycle shift. It last for several tens of milliseconds.
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Low latitude scintillation
How 1-cycle jumps can be detected at 1Hz?
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Some internal information for receiver can be used, but is it reliable? 19



FAAS (149.6W, 17.4S) ISMR receiver: PRN24

Geodetlc de- trendlng of LIF (L1 L5) L, (L1,L5)-L,r (L1,L2)

29000 29500 F0000 S0D00 FL000 1500 F2000 F2800
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With three frequency systems, the combination geometry-free and lonosphere-
Free can be explored as a real-time reliable detector of 1-cycle jumps.

This picture illustrates the accuracy of the geodetic de-trending over L ¢
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4.- Conclusions

« The Geodetic de-trending of Lz has been proven to be a powerful
tool to analyze scintillation effects.

« High latitude, scintillation is less likely to cause signal loss and
usually does not produces large number of cycle-slips.
« It is mostly refractive, and then, dual frequency users can
navigate also during high ionospheric activity.
* But, due to the large space-temporal gradients it is
challenging for single frequency users.

 Low latitude is a more difficult scenario were scintillation can lead
frequent cycle-slips and loss of GNSS signals.
* Multi-constellation helps under GNSS signals loss.
* Itis challenging to detect 1-cycle jumps in real-time.
 The carrier noise is increased, but high accuracy navigation
with dual-frequency signals is still possible, provided that the
cycle-slips are detected in a reliable way.
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Thank you
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@ Low latitude scintillation

How small cycle slips can be detected?
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