On the Geometric Dependence of Scintillation and Stochastic Structure Models

by

Charles L. Rino*1,2, Charles S. Carrano¹, Jade Morton², Joy Jao², Jun Wang², and Dongyang Xu²

1 Institute for Scientific Research, Boston College, 140 Commonwealth Ave., Boston, MA, 02467, USA

² Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, 02467, USA

Stochastic Structure Models

• Parameterized structure models provide the interface between propagation theory and real-world observations.

Caveats:

- Highly field-aligned structures do not support definitive statistical variations along the field lines.
- Structure realizations derived by imposing an amplitude variation on uncorrelated Fourier modes are non-physical.
- This talk with introduce a configuration-space model that preserves known structure characteristics with realizable *striations*.

Two Structure Realization Approaches

Summation of Fourier components

$$\delta N(\mathbf{r})/N_0 = \iiint \sqrt{\Phi_{\delta N/N_0}(\mathbf{K})} \, \eta(\mathbf{K}) \exp\{i\mathbf{K} \cdot \mathbf{r}\} \frac{d\mathbf{K}}{(2\pi)^3}$$

Summation of Striations

$$\delta N(\zeta_s, \zeta_\tau)/N_0 = \frac{1}{N_s} \sum_k F_k p_s(|\zeta_s - \zeta_s^k|) p_\perp(|\zeta_\tau - \zeta_\tau^k|/\sigma_k)$$

$$\delta N(\mathbf{\kappa}_s)/N_0 = \frac{1}{N_s} \sum_k F_k \sigma_k^2 \widehat{p}_{\perp}^{(2)}(\kappa_s \sigma_k) \exp\{-i\mathbf{\kappa}_s \cdot \mathbf{\rho}_s^k\}$$

$$\langle |\Delta N(\mathbf{\kappa}_s)|^2 \rangle / N_0^2 = \frac{1}{N_s} \sum_k F_k^2 \sigma_k |\widehat{p}_{\perp}^{(n_d)}(\kappa_s \sigma_k)|^2 \quad n_d = \begin{cases} 1 \\ 2 \end{cases}$$

Propagation Geometry

Cardinal Orientations

1D Cross-Field Scans

Propagation Cross Field

Propagation Along Field

A Directed Example

Ascension Island Data

Simulation PDF

One-Dimensional Phase Screen

Simulation Data

-2

-1

Conclusions

- Cross-field and field-aligned propagation geometries generate measurement-plane structure that preserve striation size-distributions.
- Textural differences depend on field-aligned structure, which is currently being investigated.
- Fully two-dimensional or equivalent phase screens capture the stochastic structure.
- Conventional structure realizations also capture the stochastic structure.
- Structure defined by striation distributions has ramifications for data interpretation. PDFs are more sensitive to structural differences than PSDs.
- The ramification of field curvature remains to be investigated.

Successive Bifurcation Rule

$$\sigma_j = \sigma_{\text{max}} 2^{-j}$$
 Striation scale

$$N_j = 2^{d-j}$$
 Number of striations at scale j

$$F_j = \sigma_j^{-\eta}$$
 Strength of striation at scale j

