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Modeling of transionospheric propagation with numerical schemes:  
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Propagation geometry and medium description 
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Electron-density fluctuations are described by Shkarofsky  [1968]  spectrum: 

Fig.1: Spectrum of electron-density  
fluctuations 

Fig.2: Ellipsoidal ionospheric irregularity 
With anisotropy ratios AX=AY=1 and AZ 
elongated along the terrestrial magnetic 
field H0 
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Propagation geometry and medium description 

Fig.3: LOS coordinate system 
(u,v,s) 

Fig.4: Geometry of the ionospheric turbulent 
Irregularities in the LOS coordinate system 
(u,v,s) 



Content 
 
• Propagation geometry and medium description 

 
• 3D and 2D numerical schemes 

 
• 3D and 2D analytical derivations 

 
• Results in equatorial configuration 

 
• Results in polar configuration 

 
• Conclusions 

7 

 
3D to 2D approximation effect on propagation modeling, 

impact on scintillation indices 
 



Parabolic Wave Equation Method with multiple Phase screen 

Iterative Solution of PWE (Split-Step Fourier SSF) : 
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Helmholtz equation resolution: 
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3D-PWE/2D-MPS  
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Propagation geometry  
and medium description 

Fig.4: Geometry of the ionospheric turbulent 
Irregularities in the LOS coordinate system (u,v,s) 
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Coefficient formulations different of [Rino, 1979] because derived in 
LOS geometry 



PWE-MPS Scheme 
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Analytical derivations under weak scattering assumption 

Analytical resolution of Helmholtz equation in stochastic medium: 
0)()],(21[)(² 2 =∆++∇ rEtrnkrE o

Under weak scattering assumption [Rytov et al., 1989]:  
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variances (log-amplitude and phase) are computed in 
LOS in 3D and 2D 
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Analytical derivations under weak scattering assumption 
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Analytical derivations under weak scattering assumption 
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Analytical derivations under weak scattering assumption 
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Results in Equatorial configuration 

17 

Fig.5: Ionospheric irregularity in the LOS 
coordinate system (u,v,s) for the 1st equatorial 
configuration 

Fig.6: Ionospheric irregularity in the LOS 
coordinate system (u,v,s) for the 2nd equatorial 
configuration 

2 equatorial configurations considered: 
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Results in Equatorial configuration 

°= 90zα

Top View (uOv) 
(LOS transverse plane) 

Fig.7: Ratio of log-amplitude variances derived from 3D and 
2D numerical simulations (+) and analytical (-) as a function 
of the plane of dimensional reduction defined by αZ 
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Results in Equatorial configuration 

°= 60zα

Fig.7: Ratio of log-amplitude variances derived from 3D and 
2D numerical simulations (+) and analytical (-) as a function 
of the plane of dimensional reduction defined by αZ 

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

°= 30zα

Fig.7: Ratio of log-amplitude variances derived from 3D and 
2D numerical simulations (+) and analytical (-) as a function 
of the plane of dimensional reduction defined by αZ 

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

°= 0zα

Fig.7: Ratio of log-amplitude variances derived from 3D and 
2D numerical simulations (+) and analytical (-) as a function 
of the plane of dimensional reduction defined by αZ 

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

°= 90zα

Fig.7: Ratio of log-amplitude variances derived from 3D and 
2D numerical simulations (+) and analytical (-) as a function 
of the plane of dimensional reduction defined by αZ 

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

°= 60zα

Fig.7: Ratio of log-amplitude variances derived from 3D and 
2D numerical simulations (+) and analytical (-) as a function 
of the plane of dimensional reduction defined by αZ 

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

°= 30zα

Fig.7: Ratio of log-amplitude variances derived from 3D and 
2D numerical simulations (+) and analytical (-) as a function 
of the plane of dimensional reduction defined by αZ 

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

°= 0zα

Fig.7: Ratio of log-amplitude variances derived from 3D and 
2D numerical simulations (+) and analytical (-) as a function 
of the plane of dimensional reduction defined by αZ 

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

Fig.8: Ratio of phase variances derived from 3D and 2D 
numerical simulations (+) and analytical (-) as a function of 
the plane of dimensional reduction defined by αZ 

°= 90zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

Fig.8: Ratio of phase variances derived from 3D and 2D 
numerical simulations (+) and analytical (-) as a function of 
the plane of dimensional reduction defined by αZ 

°= 60zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

Fig.8: Ratio of phase variances derived from 3D and 2D 
numerical simulations (+) and analytical (-) as a function of 
the plane of dimensional reduction defined by αZ 

°= 30zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

Fig.8: Ratio of phase variances derived from 3D and 2D 
numerical simulations (+) and analytical (-) as a function of 
the plane of dimensional reduction defined by αZ 

°= 0zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

Fig.8: Ratio of phase variances derived from 3D and 2D 
numerical simulations (+) and analytical (-) as a function of 
the plane of dimensional reduction defined by αZ 

°= 90zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

Fig.8: Ratio of phase variances derived from 3D and 2D 
numerical simulations (+) and analytical (-) as a function of 
the plane of dimensional reduction defined by αZ 

°= 60zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

Fig.8: Ratio of phase variances derived from 3D and 2D 
numerical simulations (+) and analytical (-) as a function of 
the plane of dimensional reduction defined by αZ 

°= 30zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

Fig.8: Ratio of phase variances derived from 3D and 2D 
numerical simulations (+) and analytical (-) as a function of 
the plane of dimensional reduction defined by αZ 

°= 0zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Equatorial configuration 

Whatever the configuration: 
• 2D-PWE/1D-MPS numerical schemes underestimates 3D log-amplitude 

variances in proportions that depends on the plane of dimentional reduction 
(from 1 up to 87,2) 

• 2D numerical schemes slightly overestimate 3D phase variances (from 
0,96 up to 1) 
 

If one accepts an error of 10%: 
• For equatorial case, then 2D numerical schemes can be safely used for αz 

less than  ~20° 
• For second equatorial configuration, the optimal plane of dimensional 

reduction around αz = 0, introduces an error of 22%, i.e. well beyond the 
error margin arbitrarily fixed to 10 % 
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Results in Polar configuration 

2 polar configurations considered: 

Fig.9: Ionospheric irregularity in the LOS 
coordinate system (u,v,s) for the 1st polar 
configuration 

Fig.10: Ionospheric irregularity in the LOS 
coordinate system (u,v,s) for the 2nd polar 
configuration 

sheet-like ionospheric irregularities  field-aligned rods  
[Livingston et al., 1982], [Gola, 1992] 
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Results in Polar configuration 

Fig.11: Ratio of log-amplitude variances derived from 3D 
and 2D numerical simulations (+) and analytical (-) as a 
function of the plane of dimensional reduction defined by αZ 

°= 90zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Polar configuration 

Fig.11: Ratio of log-amplitude variances derived from 3D 
and 2D numerical simulations (+) and analytical (-) as a 
function of the plane of dimensional reduction defined by αZ 

°= 60zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Polar configuration 

Fig.11: Ratio of log-amplitude variances derived from 3D 
and 2D numerical simulations (+) and analytical (-) as a 
function of the plane of dimensional reduction defined by αZ 

°= 30zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Polar configuration 

Fig.11: Ratio of log-amplitude variances derived from 3D 
and 2D numerical simulations (+) and analytical (-) as a 
function of the plane of dimensional reduction defined by αZ 

°= 0zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Polar configuration 

Fig.11: Ratio of log-amplitude variances derived from 3D 
and 2D numerical simulations (+) and analytical (-) as a 
function of the plane of dimensional reduction defined by αZ 

°= 90zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Polar configuration 

Fig.11: Ratio of log-amplitude variances derived from 3D 
and 2D numerical simulations (+) and analytical (-) as a 
function of the plane of dimensional reduction defined by αZ 

°= 60zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Polar configuration 

Fig.11: Ratio of log-amplitude variances derived from 3D 
and 2D numerical simulations (+) and analytical (-) as a 
function of the plane of dimensional reduction defined by αZ 

°= 30zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Polar configuration 

Fig.11: Ratio of log-amplitude variances derived from 3D 
and 2D numerical simulations (+) and analytical (-) as a 
function of the plane of dimensional reduction defined by αZ 

°= 0zα

Top View (uOv) 
(LOS transverse plane) 
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Results in Polar configuration 

Fig.12: Ratio of phase variances derived from 3D and 2D 
numerical simulations (+) and analytical (-) as a function of 
the plane of dimensional reduction defined by αZ 



Conclusion 

Study of dimensional reduction 3D to 2D has been performed from numerical 
(PWE-MPS) and analytical (Rytov) modeling 

 
The results for typical polar and equatorial configurations have shown: 
 
 
 
 
 
From the analytical formulation, these observations can be generalized 
 
For more details : « Validity of 2D electromagnetic approaches to predict Log-

amplitude and phase variances due to 3D ionospheric scintillation 
effects”,  Hélène Galiègue, Laurent Féral, Vincent Fabbro 

 To be submitted very soon to JGR 
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Thank you for your attention 
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