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Motivation 
 

 GNSS-TEC has become a very important data source for scientific analysis, 
validation of theoretical and empirical models and data assimilation into 
these models. 
 

 When using GNSS-TEC, one has to keep in mind that these are not direct 
measurements but quantities derived from the raw data involving several 
data analysis steps and calibration methods that vary from data analysis 
group to data analysis group. These calibration steps have to account for 
receiver and transmitter biases, multi-path corrections, slant-to-vertical 
transformation, and other error sources.  
 

 The goal of this study is to evaluate the accuracy of some of these 
calibration techniques using NeQuick simulated scenarios as “known” 
ionosphere.    
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GNSS calibration schemes 
 

The Azpilicueta et al. (2006) and Brunini et al. (2010) calibration scheme was developed as part of 
LPIM (La Plata Ionospheric Model). It is based on the geometry-free combination (L4) carrier-phase 
leveled to code (P4) and the assumption of constant calibration terms (DCBs) for at least one day. 
The slant TEC is mapped with the standard mapping function and the vertical TEC is geographically 
modeled with polynomial functions or spherical harmonics. The temporal variations of the 
coefficients are modeled with periodic functions.  
 
The method of Seemala and Valladares (2011) uses the combination of both phase and code values 
at L1 and L2 frequencies to eliminate the effect of clock errors and tropospheric water vapor to 
calculate absolute values of slant TEC. The differential satellite bias corrections published by 
University of Bern are used. The receiver bias is calculated by minimizing the TEC variability 
between 0200 and 0600 LT (when spatial variability is less) or for the entire data of day (depending 
on data length). The resultant slant TEC is converted to vertical TEC using the single shell mapping 
function assuming 350 km altitude for the centroid of the ionosphere.  
 
The Single-Station Arc-Offset method of Ciraolo et al. (2007) forms the geometry-free combination 
L4  for each arc from the observations in the RINEX files. L4 gives TEC, which is expanded by a 
Vertical Equivalent 2-D function of time (LT) and horizontal coordinates (Modip), plus an arc 
unknown offset. Standard Least Square methods are used to estimate the unknown coefficients of 
VEQ expansion and the arc offsets. The default height is 400km for the single shell mapping and can 
be also provided by the user. 
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where :

C  represents the combination of the phase ambiguities

B    is the phase inter-frequency bias for the receiver i

B   is the phase inter-frequency bias for the satellite k

   is the phase measur ement error
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where :

b   is the DCB of the receiver i

b  is the DCB of the receiver k

 is the code measurement error

GPS Ionospheric obserbables – P4 and L4 

1 2

k k

i iP  and P  GPS code observations

1 2

k k

i iL  and L  GPS carrier phase observations

LPIM calibration technique details 
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Carrier-to-code leveling technique 

Combining P4 and L4, we 
compute one calibration 
constant per continuous arc 

Smoothed L4 is equivalent to carrier-to-code 
leveling  observable 

Definition of the smoothed L4 
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  is the elevation of the satellite

 is the longitude of the pierce point

 is the latitude of the pierce point

 is the longitude of the GPS station

 is the latitude of the GPS station

R  is th
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e radius of the Earth

H is the height of the single layer

A set of coefficients a0,a1 and a2 is computed every 15 minutes 
and a set of DCBs is computed for every day. 

Model for the spatial and temporal variation for the VTEC 
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Differences between the Calibration Methods 
 
TEC can be obtained from  the GPS carrier phase or from the group delay 
(code) measurement. Calculation of TEC from group delay measurement is 
absolute and noisy. The relative phase delay between the two carrier 
frequencies gives a more precise measure of relative TEC, but is ambiguous 
because the actual number of cycles of phase is unknown. These two 
estimates can be combined to form an improved estimate for absolute 
TEC. 
 
LPIM and GOBI use both the phase and group delay (L and P) while GIGI is 
more strongly based on the phase measurement. 
 
LPIM and GIGI calculate the station and satellite biases as part of the 
analysis process while GOBI takes the bias factors provided by Bern. 
 
Small differences in the mapping procedure , e.g., the height of the single-
shell model. and also in the functions used to describe the spatial and 
temporal variation of TEC.   
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Stations for which GPS data were simulated 

These stations were chosen considering that they are under the 
effect of the Ionospheric Equatorial Anomaly, a critical region of 
the ionosphere dominated by significant temporal and spatial 
gradients.  
 
 
For the validation exercise equinox conditions with a F10.7 solar 
flux of 193 were used (day  301 of year 2013).   
 
 
Each team used their calibration method with the provided 
simulated data and their sTEC results were then compared back to 
the NeQuick reference data 
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Absolute differences against UT 
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Histograms of Differences Method-Reference  
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 Best overall results with the GIGI method 
 
 Largest discrepancies for Libreville, station 

on/near anomaly crest 
 

 Assessment highlights the importance and 
impact of the calibration method on GPS-TEC 
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